Approximation of Sequences of Symmetric Matrices with the Symmetric Rank-One Algorithm and Applications

نویسنده

  • Sylvain Arguillère
چکیده

The symmetric rank-one update method is well-known in optimization for its applications in the quasi-Newton algorithm. In particular, Conn, Gould, and Toint proved in 1991 that the matrix sequence resulting from this method approximates the Hessian of the minimized function. Extending their idea, we prove that the symmetric rank-one update algorithm can be used to approximate any sequence of symmetric invertible matrices, thereby adding a variety of applications to more general problems, such as the computation of constrained geodesics in shape analysis imaging problems. We also provide numerical simulations for the method and some of these applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The exponential functions of central-symmetric $X$-form matrices

It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...

متن کامل

Accurate Symmetric Rank Revealing and Eigendecompositions of Symmetric Structured Matrices

We present new O(n3) algorithms that compute eigenvalues and eigenvectors to high relative accuracy in floating point arithmetic for the following types of matrices: symmetric Cauchy, symmetric diagonally scaled Cauchy, symmetric Vandermonde, and symmetric totally nonnegative matrices when they are given as products of nonnegative bidiagonal factors. The algorithms are divided into two stages: ...

متن کامل

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

Properties of Central Symmetric X-Form Matrices

In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.

متن کامل

Computing Symmetric Rank-Revealing Decompositions via Triangular Factorization

We present a family of algorithms for computing symmetric rank-revealing VSV decompositions, based on triangular factorization of the matrix. The VSV decomposition consists of a middle symmetric matrix that reveals the numerical rank in having three blocks with small norm, plus an orthogonalmatrix whose columns span approximations to the numerical range and null space. We show that for semi-de ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015